4766
 Statistics 1

$\begin{aligned} & \text { Q1 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \hline \text { Mode }=7 \\ & \text { Median = } 12.5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$	2
(ii)	Positive or positively skewed	E1	1
(iii)	(A) Median (B) There is a large outlier or possible outlier of 58 / figure of 58 . Just 'outlier' on its own without reference to either 58 or large scores E0 Accept the large outlier affects the mean (more) E1	E1 cao E1indep	2
(iv)	There are $14.75 \times 28=413$ messages So total cost $=413 \times 10$ pence $=£ 41.30$	M1 for 14.75×28 but 413 can also imply the mark A1cao	2
		TOTAL	7
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$\binom{4}{3} \times 3!=4 \times 6=24$ codes or ${ }^{4} P_{3}=24\left(\mathrm{M} 2\right.$ for $\left.{ }^{4} \mathrm{P}_{3}\right)$ Or $\quad 4 \times 3 \times 2=24$	M1 for 4 M1 for $\times 6$ A1	3
(ii)	$4^{3}=64$ codes	$\begin{array}{\|l} \hline \text { M1 for } 4^{3} \\ \text { A1 cao } \\ \hline \end{array}$	2
		TOTAL	5
$\begin{aligned} & \text { Q3 } \\ & \text { (i) } \end{aligned}$	Probability $=0.3 \times 0.8=0.24$	M1 for 0.8 from (1-0.2) A1	2
(ii)	$\begin{aligned} & \text { Either: } \begin{aligned} & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ &=0.3+0.2-0.3 \times 0.2 \\ &=0.5-0.06=0.44 \\ & \text { Or: } \mathrm{P}(A \cup B)= 0.7 \times 0.2+0.3 \times 0.8+0.3 \times 0.2 \\ &=0.14+0.24+0.06=0.44 \\ & \text { Or: } \mathrm{P}(A \cup B)= 1-\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right) \\ &=1-0.7 \times 0.8=1-0.56=0.44 \end{aligned} \end{aligned}$	M1 for adding 0.3 and 0.2 M1 for subtraction of (0.3×0.2) A1 cao M1 either of first terms M1 for last term A1 M1 for 0.7×0.8 or 0.56 M1 for complete method as seen A1	3
(iii)	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.06}{0.44}=\frac{6}{44}=0.136$	M1 for numerator of their 0.06 only M1 for 'their 0.44 ' in denominator A1 FT (must be valid p)	3
		TOTAL	8

Q4 (i)	$E(X)=1 \times 0.2+2 \times 0.16+3 \times 0.128+4 \times 0.512=2.952$ Division by 4 or other spurious value at end loses A mark $E\left(X^{2}\right)=1 \times 0.2+4 \times 0.16+9 \times 0.128+16 \times 0.512=10.184$ $\operatorname{Var}(X)=10.184-2.952^{2}=1.47 \text { (to } 3 \text { s.f.) }$	M1 for $\Sigma r p$ (at least 3 terms correct) A1 cao M1 for $\Sigma x^{2} p$ at least 3 terms correct M1 for $E\left(X^{2}\right)-E(X)^{2}$ Provided ans >0 A1 FT their $\mathrm{E}(X)$ but not a wrong $E\left(X^{2}\right)$	5
(ii)	Expected cost $=2.952 \times £ 45000=£ 133000$ (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
(iii)		G1 labelled linear scales G1 height of lines	2
		TOTAL	8
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
(iii)	$\begin{aligned} & 0.7^{2}+0.3 \times 0.7^{2}+0.7 \times 0.3 \times 0.7^{2}=0.7399 \text { or } 0.74(0) \\ & \{0.49+0.147+0.1029=0.7399\} \end{aligned}$	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4
		TOTAL	8

$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$	$x \sim \mathrm{~B}(12,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=1)=\binom{12}{1} \times 0.05 \times 0.95^{11}=0.3413$ OR from tables $\quad 0.8816-0.5404=0.3412$ (B) $\mathrm{P}(\boldsymbol{X} \geq 2)=1-0.8816=0.1184$ (C) Expected number $\mathrm{E}(\boldsymbol{X})=\boldsymbol{n} \boldsymbol{p}=12 \times 0.05=0.6$	M1 0.05×0.95^{11} M1 $\binom{12}{1} \times p q^{11}(p+q)=$ 1 A1 cao OR: M1 for 0.8816 seen and M1 for subtraction of 0.5404 A1 cao M1 for $1-P(X \leq 1)$ A1 cao M1 for 12×0.05 A1 cao (= 0.6 seen)	3 2 2
(ii)	Either: $1-0.95^{n} \leq 1 / 3$ $0.95^{n} \geq 2 / 3$ $n \leq \log 2 / 3 / \log 0.95$, so $n \leq 7.90$ Maximum $n=7$ Or: (using tables with $p=0.05$): $n=7$ leads to $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)=1-0.6983=0.3017(<1 / 3)$ or 0.6983 (>2/3) $n=8$ leads to $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)=1-0.6634=0.3366(>1 / 3)$ or $0.6634(<2 / 3)$ Maximum $n=7$ (total accuracy needed for tables) Or: (using trial and improvement): $1-0.95^{7}=0.3017(<1 / 3) \text { or } 0.95^{7}=0.6983(>2 / 3)$ $1-0.95^{8}=0.3366(>1 / 3) \text { or } 0.96^{8}=0.6634(<2 / 3)$ Maximum $n=7$ (3 sf accuracy for calculations) NOTE: $n=7$ unsupported scores SC1 only Let $X \sim \mathrm{~B}(60, p)$ Let $p=$ probability of a bag being faulty $\mathrm{H}_{0}: p=0.05$ $\mathrm{H}_{1}: p<0.05$ $P(X \leq 1)=0.95^{60}+60 \times 0.05 \times 0.95^{59}=0.1916>10 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	M1 for equation in n M1 for use of logs A1 cao M1indep M1indep A1 cao dep on both M's M1indep (as above) M1indep (as above) A1 cao dep on both M's B1 for definition of p B1 for H_{0} B1 for H_{1} M1 A1 for probability M1 for comparison A1 E1	3 8
		TOTAL	18

