4766 Mark Scheme January 2008

4766 Statistics 1

Q1	Mode = 7	B1 cao	
(i)	Median = 12.5	B1 cao	2
(ii)	Positive or positively skewed	E1	1
/***	(A) Median	E1 cao	
(iii)	(B) There is a large outlier or possible outlier of 58 / figure of 58.	E1indep	2
	Just 'outlier' on its own without reference to either 58 or large scores E0		
	Accept the large outlier affects the mean (more) E1		
(iv)	There are $14.75 \times 28 = 413$ messages	M1 for 14.75 × 28 but 413	2
	So total cost = 413×10 pence = £41.30	can also imply the mark A1 cao	
		TOTAL	7
Q2	(4) 21 4 6 24 4 4 4 4 4 4		
(i)	$\binom{4}{3} \times 3! = 4 \times 6 = 24$ codes or $^{4}P_{3} = 24$ (M2 for $^{4}P_{3}$)	M1 for 4 M1 for ×6	3
	$Or 4 \times 3 \times 2 = 24$	A1	3
(ii)		M1 for 4 ³	
	$4^3 = 64 \text{ codes}$	A1 cao	2
		TOTAL	5
Q3			
(i)	Probability = $0.3 \times 0.8 = 0.24$	M1 for 0.8 from (1-0.2)	2
	Either: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1 for adding 0.3 and	
(ii)	$= 0.3 + 0.2 - 0.3 \times 0.2$	0.2 M1 for subtraction of	
	= 0.5 - 0.06 = 0.44	(0.3 × 0.2)	
	- 6.6 6.66 - 6.11	À1 cao	
	Or: $P(AUB) = 0.7 \times 0.2 + 0.3 \times 0.8 + 0.3 \times 0.2$	M1 either of first terms	
	= 0.14 + 0.24 + 0.06 = 0.44	M1 for last term A1	3
	Or: $P(AUB) = 1 - P(A' \cap B')$	M1 for 0.7 × 0.8 or	
	$= 1 - 0.7 \times 0.8 = 1 - 0.56 = 0.44$	0.56 M1 for complete	
		method as seen	
(iii)	$P(A \cap R) = 0.06$	A1 M1 for numerator of	
()	$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{0.06}{0.44} = \frac{6}{44} = 0.136$	their 0.06 only	3
	1 (D) 0.44 44	M1 for 'their 0.44' in	
		denominator A1 FT (must be valid	
		p) .	
		TOTAL	8

Q4 (i)	$E(X) = 1 \times 0.2 + 2 \times 0.16 + 3 \times 0.128 + 4 \times 0.512 = 2.952$ Division by 4 or other spurious value at end loses A mark $E(X^2) = 1 \times 0.2 + 4 \times 0.16 + 9 \times 0.128 + 16 \times 0.512 = 10.184$ $Var(X) = 10.184 - 2.952^2 = 1.47 \text{ (to 3 s.f.)}$	M1 for Σ rp (at least 3 terms correct) A1 cao M1 for Σ x^2p at least 3 terms correct M1 for $E(X^2) - E(X)^2$ Provided ans > 0 A1 FT their $E(X)$ but not a wrong $E(X^2)$	5
(ii)	Expected cost = 2.952 × £45000 = £133000 (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
(iii)	0.6 0.4 0.2 0 1 2 3 4	G1 labelled linear scales G1 height of lines	2
		TOTAL	8
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
(iii)	$0.7^2 + 0.3 \times 0.7^2 + 0.7 \times 0.3 \times 0.7^2 = 0.7399$ or $0.74(0)$ { $0.49 + 0.147 + 0.1029 = 0.7399$ }	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4
		IOIAL	9

4766 Mark Scheme January 2008

	Section B		
Q6			
(i)	Mean = $\frac{180.6}{12}$ = 15.05 or 15.1	B1 for mean	
	180.6^2	M1 for attempt at S_{xx}	
	$S_{xx} = 3107.56 - \frac{180.6^2}{12}$ or $3107.56 - 12$ (their 15.05) ² =	With for attempt at $\Theta_{\chi\chi}$	
	(389.53)		3
	$s = \sqrt{\frac{389.53}{11}} = 5.95$ or better		
	$3 - \sqrt{\frac{11}{11}} = 3.93$ of better	A1 cao	
	NB Accept answers seen without working (from calculator)		
(ii)	$\overline{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$	M1 for attempt at either M1 for both	
	$\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ So no outliers	A1 for limits and	
	30 HO Oddiers	conclusion FT their	3
		mean and sd	
(iii)	New mean = $1.8 \times 15.05 + 32 = 59.1$	B1FT	
("")	New Mean - 1.0 × 13.00 + 32 = 33.1		
	New $s = 1.8 \times 5.95 = 10.7$	M1 A1FT	3
(iv)	New York has a higher mean or 'is on average' higher (oe)	E1FT using ${}^{0}F$ (\bar{x} dep)	
	New York has greater spread /range /variation or SD (oe)	E1FT using 0 F (σ dep)	2
(v)	Tion Folk had greater oprodu / ange / variation of CE (co)	Lift doing i (o dop)	
,	[B1 for all correct	
	Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48	cumulative frequencies	
		(may be implied from graph). Ignore cf of 0	
		at this stage	
	3 50	G1 for linear scales (linear from 70 to 190)	
	9 40	ignore x < 70	
	ğ 30 ———————————————————————————————————	vertical: 0 to 50 but not beyond 100 (no inequality	
	Cumulative frequency 10 10 10 10 10 10 10 10 10 10 10 10 10	scales)	
		O4 for labola	
	O O O	G1 for labels	5
	0 50 100 150 200	G1 for points plotted as	3
	Hours	(UCB, their cf). Ignore	
		(70,0) at this stage. No mid – point or LCB plots.	
(vi)	NB all G marks dep on attempt at cumulative frequencies.		
		G1 for joining all of	
		'their points'(line or smooth curve) AND now	
	NB All G marks dep on attempt at cumulative frequencies	including (70,0)	
	NB All 6 marks depon attempt at cumulative frequencies	3(/ /	2
		M1 for use of 43.2	
	Line on graph at cf = 43.2(soi) or used	A1FT but dep on 3rd G	
	90th percentile = 166	mark earned	
		TOTAL	40
		TOTAL	18

Q7	<i>X</i> ~ B(12, 0.05)		
(i)	(A) $P(X = 1) = {12 \choose 1} \times 0.05 \times 0.95^{11} = 0.3413$	M1 0.05×0.95^{11}	
	(1)	M1 $\binom{12}{1} \times pq^{11} (p+q) =$	
		1	3
	OR from tables $0.8816 - 0.5404 = 0.3412$	A1 cao OR: M1 for 0.8816	
		seen and M1 for	2
		subtraction of 0.5404 A1 cao	
	(\mathbf{B}) $P(\mathbf{X} \ge 2) = 1 - 0.8816 = 0.1184$	M1 for 1 − P(X ≤ 1) A1 cao	2
	(C) Expected number $E(X) = np = 12 \times 0.05 = 0.6$	M1 for 12×0.05	
/!!\	• • •	A1 cao (= 0.6 seen)	
(ii)	<i>Either</i> : $1 - 0.95^n \le \frac{1}{3}$ 0.95 ⁿ ≥ $\frac{2}{3}$	M1 for equation in <i>n</i>	
	$n \le \log \frac{2}{3} / \log 0.95$, so $n \le 7.90$ Maximum $n = 7$	M1 for use of logs A1 cao	
	Maximum n = r	AT CaO	
	Or: (using tables with $p = 0.05$): n = 7 leads to		
	$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6983 = 0.3017 (< \frac{1}{3})$ or		
	0.6983 (> 2/3) n = 8 leads to	M1indep	
	$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6634 = 0.3366 \ (> \frac{1}{3}) \text{ or } 0.6634 \ (< \frac{2}{3})$	M1indep	
	Maximum $n = 7$ (total accuracy needed for tables)	A1 cao dep on both M's	3
	Or: (using trial and improvement):		
	$1 - 0.95^7 = 0.3017 \ (< \frac{1}{3}) \text{ or } 0.95^7 = 0.6983 \ (> 2/3)$ $1 - 0.95^8 = 0.3366 \ (> \frac{1}{3}) \text{ or } 0.96^8 = 0.6634 \ (< 2/3)$ Maximum $n = 7$ (3 sf accuracy for calculations)	M1indep (as above) M1indep (as above)	
	NOTE: $n = 7$ unsupported scores SC1 only	A1 cao dep on both M's	
(iii)	Let $X \sim B(60, p)$ Let $p =$ probability of a bag being faulty H_0 : $p = 0.05$ H_1 : $p < 0.05$	B1 for definition of <i>p</i> B1 for H ₀ B1 for H ₁	8
	$P(X \le 1) = 0.95^{60} + 60 \times 0.05 \times 0.95^{59} = 0.1916 > 10\%$	M1 A1 for probability M1 for comparison	
	So not enough evidence to reject H ₀	A1	
	Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	E1	
		TOTAL	18